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Abstract

We study transversely affine foliations with affine leaves from the point of view of Koszul–Vinberg
modules. We have found a cohomological condition which assures that these structures determine an
affine structure on the ambient manifold. The theoretical part is supplemented by suitable examples.
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1. Introduction

Affine manifolds play an important role in the theory of geometrical quantization—under
some conditions a symplectic manifold carries also the structure of an affine manifold. To
be precise, a careful look at the Konstant–Souriau quantization of classical observables
discloses that it depends on a pair of supplementary Lagrangian subbundles. In his paper
[2] Hess improved this classical method using bi-Lagrangian connections. His approach
unifies several quantization methods. One of the important properties considered by Hess
in his paper is the following theorem.

Theorem 1 (Hess). Let F and Q be two supplementary Lagrangian subbundles of a sym-
plectic manifold(M,ω). Then F andQ are Heisenberg related foliations iff the associated
bi-Lagrangian connection is flat.
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The Hess theorem assures that the symplectic manifold in question has an affine structure
defined by a symplectic connection who induces canonical affine structures on leaves of
both Lagrangian foliations.

Independently, the first author developed a similar theory of connections in view of an
application to the theory of affine structures on nilpotent and solvable Lie groups, cf.[3,4].

In his paper[6] the second author took up the study of pairs of supplementary Lagrangian
subbundles assuming that one of them is a foliation. A simple condition on the curvature of
the associated bi-Lagrangian connection assured that the foliation was transversely affine.
Namely, we have the following proposition.

Proposition 1. Let F be a Lagrangian foliation on a symplectic manifold (M,ω). If F
admits a supplementary Lagrangian subbundle for which the associated bi-Lagrangian
connection is tangential, i.e. the mixed component of the curvature vanishes, then the foli-
ation F is transversely affine.

This proposition permitted to apply the theory of transversely affine foliations developed
by the second author and prove some interesting properties of such pairs of supplementary
Lagrangian subbundles, cf.[6,7].

In this short paper we propose to look at these structures from a different point of view.
We assume that on a manifold we have a transversely affine foliation whose leaves are
affine manifolds. We apply the theory of Koszul–Vinberg modules and their homologies
developed by the first author[5] to obtain homological conditions which ensure that our
manifold is affine and its flat connection induces the initial affine structures on leaves of the
foliation as well as the initial transverse affine structure.

2. Notation and definitions

In this section we recall and introduce some useful notions and present chosen examples.
All the objects considered are smooth, i.e.C∞, unless otherwise stated.

c is a vector bundleE → M whose space of sectionsΓ (E) (or more precisely the sheaf
of sections) has the following properties:

(p1) Γ (E) is a Koszul–Vinberg algebra, i.e. to any two sectionss, s′ we associate a third
ones ·s′ and this multiplication satisfies the following condition: for any three sections
s, s′ ands′′

(s, s′, s′′) = (s′, s, s′′), (s, s′, s′′) = s · (s′ · s′′) − (s · s′) · s′′.

(p2) There exists a linear mapping (called anchor)a : Γ (E) → X (M) satisfying the
following for anyf ∈ C∞(M) ands, s′ ∈ Γ (E):

(fs) · s′ = f (s · s′), s · (fs′) = f (s · s′) + (α(s)f ) · s′.

Definition 1. Given a KV-algebroidE :→ M we denote byL = L(E) the subset of
s0 ∈ Γ (E) such thatss0 = 0 for anys ∈ Γ (E).

Elements ofL are called linear sectionsE (or parallel vector fields). We also setJ (E) =
{ξ ∈ Γ (E) : (s, s′, ξ) = 0 for anys, s′ ∈ Γ (E)}.
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Remark. For any KV-algebraE the space of sectionsΓ (E) is a Lie algebra with the
bracket [s, s′] = s · s′ − s′ · s. Therefore, it follows from (p2) that the anchor map is a
morphism of the associated Lie algebras.

Example 1.

(i) If (M,D) is an affine manifold then the tangent bundleE = TM is a KV-algebroid
with the multiplications · s′ = Dss

′ and the anchor mappinga(s) = s.
(ii) Let (M,ω) be a symplectic manifold. IfF is a Lagrangian foliation on(M,ω) denote

by E the subbundle ofTM of vectors tangent to the leaves of the foliationF . The
KV-algebra multiplication inΓ (E) is defined as follows:

i(s · s′)ω = Lsi(s
′)ω,

whereLs is the Lie derivation andi(s) is the inner product.
One can easily check that the associated Lie algebra structure is the standard one.

(iii) For any manifoldM its cotangent bundleT ∗M carries the structure of a KV-algebroid
associated to the vertical Lagrangian foliation of the standard symplectic manifold
(T ∗M,ω0).

Next we would like to introduce an analogue of the normal bundle of a subbundle.

Definition 2. Let E → M be a KV-algebroid with an injective anchora (such KV-alge-
broids are called regular). A KV-colagebroid ofE is a vector fibre bundleN → M together
with a linear applicationα : Γ (N) → Γ (TM) such that

(P1) Γ (N) is a KV-algebra.
(P2) There exists an exact sequence of Lie algebras

0 → Γ (E)
a→Γ (TM)

j→Γ (N) → 0. (1)

(P3) The anchor mappingα : Γ (N) → Γ (TM) is a section ofj and for any two sections
s, s′ of N and a smooth functionf

• (fs) · s′ = f (s · s′).
• s · (fs′) = f (s · s′)+ (α(s)f )s′ for anyE-basic functionf (i.e.Lα(σ)f = 0 for any

σ ∈ Γ (E)).

The mappingβ : Γ (TM) → Γ (E) defined asa(β(x)) = x−αj (x) for anyx ∈ Γ (TM).
We recall thatJ (N) is the subset of elementsξ of Γ (N) such that(s, s′ξ) = 0 for

anys, s ∈ Γ (N). It is not difficult to notice thatJ (N) is an associative subalgebra of the
KV-algebraΓ (N).

A manifold foliated by a transversely affine foliationF whose leaves carry affine struc-
tures provides us with the pair of a KV-algebroid and its coalgebroid. The subbundleE(F)
of vectors tangent to the leaves of the foliation is a KV-algebroid and the normal bundle
N(F) of the foliation is its coalgebroid. The anchor of theE(F) is the standard inclusion
and the anchor mapping ofN(F) is defined by a choice of the supplementary subbundle of
the foliation (i.e. the identification of the normal bundle with a transverse subbundle to the
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foliation). In the paper of Benoit[1] one can find an example as above in which the manifold
does not carry an affine structure (equivalentlyX (M) does not carry a KV-algebra struc-
ture) which induces the described algebraic structures onE(F) andN(F), i.e. the tangent
and transverse affine structures. The aim of this note is to present an algebraic condition
assuring that it is precise in this case.

3. E-parallel vector fields

Let E → M be a KV-algebroid. The sheafL(E) is E-transitive, i.e. for sufficiently
small open setsU the sections ofL(U) generateC∞(U)-moduleΓ (E)(U). We define the
normalizer nor(L) as follows:

nor(L)(U) = {X ∈ Γ (TM)(U) : [X, a(L(U))] ⊂ a(L(U))}.
Next, we define a sheaf of Lie subalgebras

A(E) = nor(L)(M) ∩ α(Γ (N)).

We have an exact sequence of sheaves of vector spaces

0 → L
a→A(E)

j→N → 0,

whereN = j (A(E)).
Now for anys ∈ N andl ∈ N (L) we put

a(s · l) = [v, a(l)],

and

l · s = 0,

wherej (v) = s. The definition is independent of the choice ofv as ifs = j (v) = j (v′) then
j (v − v′) = 0. Sov − v′ = a(w) for somew ∈ L. Thus [(v − v′), a(l)] = [a(w), a(l)] =
a[w, l] = 0, hence [v, a(l)] = [v′, a(l)].

Let denote byNL the vector spaceΓ (N ) considered as the Lie algebra with the bracket
induced by the bracket inA(E).
L is a trivial KV-algebra sheaf. According to the above definitionL is a trivial right

KV-module ofN and a leftNL-module.
Let us defineω : NL ×NL → E to be the measure of the fact that the splittingα is not

a Lie algebra homomorphism:

ω(s, s′) = [α(s), α(s′)] − α([s, s′])

for any sectionss, s′ of N .
ω takes values inN (L) if the splittingα takes values inA(E).
Since the exact sequence

0 → L
a→A(E)

j→NL → 0
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is a sequence of Lie algebras (with [L,L] = 0) ω is a two-cocycle of the Hochschild
complexC∗(NL,N (L)).

Let J (L) = {l ∈ L : (s, s′, l) = 0} for any sectionss, s′ ∈ N , where(s, s′, l) =
s(s′ · l) − (s · s′) · l.

The KV-complex ofN with coefficients inN (L) is the sequence

J (L)
δ0→C1(N ,N (L))

δ1→C2(N ,N (L)) · · · ,
where the mappingδq : Cq(N ,N (L)) → Cq+1(N ,N (L)) is defined as follows

q > 0, Cq(N ,N (L)) = Hom(×qN ,N (L)),

and

(δ0(l))(s) = −s · l + l · s,

δqθ(s1, . . . , sq+1) =
∑
p≤q

(−1)p{(spθ)(· · · ŝp · · · sq+1)

+(eq(sp)θsq+1)(· · · ŝp · · · ŝq+1)},
where(eq(sp)θsq+1)(ξ1, . . . , ξq−1) = θ(ξ1, . . . , ξq−1, sq)sq+1.

Proposition 2. The Koszul–Spencer operator induces a natural injection ofH2(N ,L) into
H 2(NL,L).

Proof. One sendsC2(N ,L) intoC2(NL,L) by the formulaθ �→ ∂θ , where(∂θ)(s, s′) =
θ(s, s′) − θ(s′, s). Simple calculations show thatδθ = 0 implies that d∂θ = 0, thus
d : C2(NL,L) → C3(NL,L) the coboundary operator of Chevalley–Hoschild.

On the other hand ifθ is δ-exact, thenθ(s, s′) = −s · φ(s′) + φ(s · s′) − φ(s) · s′, then
one easily sees that∂θ is d-exact. It is not difficult to verify that

dφ(s, s′) = −∂δφ(s, s′).

This last identity ensures that the mapping in question is injective. �

We put

O(E,N) = H 2(NL,N (L))

H2(NL,N (L))
.

Thus we have an exact sequence

0 → H2(NL,N (L)) → H 2(NL,N (L)) → O(E,N) → 0.

The image of the cohomology class [ω] ∈ H 2(NL,N (L)) in O(E,N) is denoted by
o(E,N).

Theorem 2. Let 0 → E → TM → N → 0be an exact sequence of vector bundles. Assume
thatN generates Γ (N) as a C∞(M,R)-module. Moreover, let E be a KV-algebroid and N
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be its KV-coalgebroid. If the right splitting α of the exact sequence takes values in N into
nor(L), then the manifold M admits an affine structure compatible with the KV-structures
on E and N iff o(E,N) = 0.

Proof of Theorem 1. Assume that the manifoldM has an affine structureD which induces
affine structures on the leaves of the foliationE, thusE is a subsheaf of the sheafTM of
KV algebras. In particular leaves of the foliationE are totally geodesic submanifolds for
the connectionD.

Our assumptions permit us to define a two-chainθ : N → L by the following formula:

θ(s, s′) = α(s) · α(s′) − α(s · s′) = Dα(s)α(s
′) − α(s · s′).

We can identifyA(E)(U) with N (L)(U) ⊕N (U) and put

(l, s) · (l′, s′) = s · l′ + α(s · s′) + θ(s, s′).

Thenθ is a two-cocycle. Since [(l, s), (l′, s′)] = [l +α(s), l′ +α(s′)] = (l, s) · (l′, s′)−
(l′, s′) · (l, s), we get that

ω(s, s′) = ∂θ(s, s′).

This last equality implies that

o(E,N ) = 0.

Now assume that o(E,N ) = 0. Then there exists a class [θ ] in H2(N ,L) such that
∂[θ ] = [ω] ∈ H 2(NL,L). Let θ ∈ [θ ]. One can chooseθ ∈ [θ ] such that∂θ = ω and
δθ = 0. Then we put (inA(E)) s · s′ = α(s) · α(s′) = α(s · s′) + θ(s, s′) and then

(l + s) · (l′ + s′) = (l + α(s)) · (l′ + α(s′)) = [α(s), l′] + θ(s, s′) + α(s · s′).

One can easily verify that

(l + s, l′ + s′, l′′ + s′′) = (l′ + s′, l + s, l′′ + s′′).

Our assumption that local sections of the sheafA(E) span the tangent bundleTM that
the multiplication defined above defines a linear connection, i.e.

(f (l + s)) · (l′ + s′) = f ((l + s) · (l′ + s′)),

and

(l + s) · (f (l′ + s′)) = f ((l + s) · (l′ + s′)) + ((l + α(s))f )(l′ + s′).

It is not difficult to verify that the connection determined by the KV-multiplication satisfies
the conditions of our theorem. �
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4. Examples

Example 2. Let M = R2. We denote byE the subbundle ofTM generated by∂/∂x. Let
fix h ∈ C∞(M,R) and define the multiplication inΓ (E) by the following formula:

f
∂

∂x
· g ∂

∂x
=

(
f
∂g

∂x
+ fg

∂h

∂x

)
∂

∂x
. (2)

This multiplication defines a Koszul–Vinberg algebra. The subalgebraL = L(E) consists
of elements of the formλ(y)e−h(x,y)∂/∂x, whereλ ∈ C∞(R,R).

Let ξ be a vector field defined as follows:

ξ(x, y) =
[
∂

∂y

∫ x

0
eh(t,y) dt

]
e−h(x,y) ∂

∂x
+ ∂

∂y
.

Let N be the subbundle ofTM generated byξ . In Γ (N) we define the multiplication as
follows:

f ξ · gξ = f ξ(g)ξ, (3)

whereξ(g) = 〈dg, ξ〉. In this way we define a Koszul–Vinberg algebra structure inΓ (N).
Let I (E) be the subalgebra of the associative algebraC∞(M,R) consisting of first in-
tegrals ofE; it is the “inverse” image ofC∞(R,R) by the canonical projectionp2 :
R × R → R, p2(x, y) = y. Thusf ∈ I (E) iff ∂f/∂x = 0. One can associate to any
α ∈ I (E)C∞(M,R)-linear mapping ofN into TM defined by

α̃(ξ)(x, y) =
(
α(y) + ∂

∂y

∫ x

0
eh(t,y) dt

)
e−h(x,y) ∂

∂x
+ ∂

∂y
. (4)

Now we can consider the couple(N, α̃) as a coalgebroid of the Koszul–Vinberg algebroid
E. We have

TM = E ⊕ α̃(N),

and the exact sequence

0 → E → TM
j→N → 0,

where

j

(
X(x, y)

∂

∂x

)
+ Y (x, y)

(
α(y)

∂

∂y
+ ξ(x, y)

)
= Y (x, y)ξ(x, y). (5)

In the sequel we assume thatα �= 0.

Lemma 1. Γ (N) contains a non-null subalgebra whose image by the anchor α̃ is in nor(L).

Proof. The subalgebra of vector fieldsX∂/∂x +Y∂/∂y in the normalizer can be identified
with couples(X, Y ) ∈ C∞(M,R)×C∞(M,R)which constitute solutions of the following
system of partial differential equations:

X(x, y)
∂h(x, y)

∂x
+ ∂X(x, y)

∂x
+ Y (x, y)

∂h(x, y)

∂y
= 0,

∂Y (x, y)

∂x
= 0.
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Let Y (x, y)ξ ∈ Γ (N), then α̃(Y ξ) ∈ nor(L) iff Y ∈ I (E), which is equivalent to
∂Y/∂x = 0.

Let us denote byη the subalgebra of the Koszul–Vinberg algebraΓ (N) consisting of
vector fields of the form

Y (y)(ξ(x, y)) = Y (y)

{(
∂

∂y

∫ x

0
eh(t,y) dt

)
e−h(x,y) ∂

∂x
+ ∂

∂y

}
.

It is not difficult to verify thatα̃(η) ⊂ nor(L). �

Let

A = nor(L) ∩ α̃(η).

It is a Lie subalgebra of the Lie algebraΓ (TM), it is a transitive one—theC∞(M,R)-module
generated byA is equal toΓ (TM). Moreover, we have the following exact sequence

0 → L→ A→ η → 0

which is split by the anchor map̃α. One can easily verify that with the standard bracket of
vector fields inη:

[f ξ, gξ ] = [f ξ(g) − gξ(f )]ξ.

The anchor is a Lie algebra homomorphism, i.e.

α̃[f ξ, gξ ] = [α̃(f ξ), α̃(gξ)],

and L̃ is an abelian subalgebra ofΓ (TM). The algebraA is a semi-direct product ofη
byL.

One can considerL as a Koszul–Vinberg module ofη by posing

ξ · l = [α̃(ξ), l], l · ξ = 0

for any l ∈ L. Then one can define inA a structure of a Koszul–Vinberg algebra such that
the exact sequence

0 → L→ A
j→η → 0

is a sequence of Koszul–Vinberg algebras.
In fact, due to the main theorem the cocycle associated toA = L× η is equal to 0. It can

be represented as an exact cycleφ ∈ C2(η,L). On the other hand,φ is of the form

φ(f ξ, gξ) = [α̃(f ξ), ψ(gξ)] − ψ(f ξ · gξ),
whereψ ∈ HomR(η,L).

Example 3. Let us consider the sameE as inExample 2with the same multiplication
in Γ (E). Take the subbundleN of TM spanned by∂/∂y. The spaceΓ (N) of sections is
equipped with multiplication

f
∂

∂y
· g ∂

∂y
= f

(
∂g

∂y

)
∂

∂y
.
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The pair(N, identity) is a coalgebroid ofE. Let Y (x, y)∂/∂y ∈ Γ (N), then it is in
nor(L) iff

∂Y

∂x

dλ

dy
− λ(y)

∂2h

∂x∂y
= 0

for anyλ ∈ I (E).
The above equation is equivalent to the following two equations:

∂Y

∂x
= 0,

∂2h

∂x∂y
= 0.

To assure that nor(L) ∩ Γ (N) be transitive it is necessary that the functionh be of the
form

h(x, y) = a(x) + b(y),

wherea, b ∈ C∞(R,R). If not,Γ (N) does not contain any Koszul–Vinberg subalgebra of
nor(L). From the above system one can easily deduce that in the general case the transverse
structure of an affine foliation plays a crucial role asI (E) �= R excludes the existence of a
dense leaf.

Example 4. LetM = S1×R2 with the coordinatesθ, x, y. They define global commuting
parallelism:∂/∂θ , ∂/∂x, ∂/∂y. Let us consider the subbundleE of TM spanned by∂/∂θ
and byN the subbundle spanned by∂/∂x and∂/∂y.

In Γ (E) we have the following multiplication:

f
∂

∂θ
· g ∂

∂θ
= f

(
∂g

∂θ

)
∂

∂θ
, (6)

and inΓ (N) the following:
(
f0

∂

∂x
+ g0

∂

∂y

) (
f1

∂

∂x
+ g1

∂

∂y

)
=

(
f0

∂f1

∂x
+ g0

∂f1

∂y
+ f0f1

)
∂

∂x

+
(
f0

∂g1

∂x
+ g0

∂g1

∂y
+ g0g1

)
∂

∂y
. (7)

With the above defined multiplicationsΓ (E) andΓ (N) are Koszul–Vinberg algebras.
Consider the applicationα of Γ (N) into Γ (TM) given by the following formulae:

α

(
∂

∂x

)
= ∂

∂x
, α

(
∂

∂y

)
= x

∂

∂θ
+ ∂

∂y
.

The couple(N, α) is a Koszul–Vinberg coalgebroid ofE. In fact for anys, s′ ∈ Γ (N)

and anyf ∈ C∞(M,R) we have

s(fs′) = fss′ + α(s)fs′

iff f ∈ I (E).
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On the other hand, due to(6), L = L(E) is the subspaceI (E)∂/∂θ . From the very
definition imα is in nor(L). Let us consider the freeI (E)-submoduleAofΓ (TM)generated
by {∂/∂θ, α(∂/∂x), α(∂/∂y)} or by {∂/∂θ, ∂/∂x, ∂/∂y + x∂/∂θ}. It is a Lie subalgebra of
Γ (TM). One can obtainA as a semi-direct product ofI (E)∂/∂x+I (E)∂/∂y by I (E)∂/∂θ .
A contains as a subalgebra the Heisenberg algebra

HZ = spanR

{
∂

∂θ
,
∂

∂x
,
∂

∂y
+ x∂

∂θ

}

which is the semi-direct product of Vect{∂/∂x, ∂/∂y} by R∂/∂θ . The cocycleω of this
extension:

R
∂

∂θ
→ HZ → Vect

{
∂

∂x
,
∂

∂y

}

is the following

ω

(
∂

∂x
,
∂

∂y

)
=

[
α

(
∂

∂x

)
, α

(
∂

∂y

)]
= ∂

∂θ
.

The idealLR = R∂/∂θ ofHZ inherits the null multiplication, butη = Vect{∂/∂x, ∂/∂y}
inherits the following multiplication fromΓ (N):(

a
∂

∂x
+ b

∂

∂y

)
·
(
a′ ∂
∂x

+ b′ ∂
∂y

)
= aa′ ∂

∂x
+ bb′ ∂

∂y
(8)

for anya, a′, b, b′ ∈ R.
We define the action ofη onLR by the following formula:(

a
∂

∂x
+ b

∂

∂y

)
· c ∂

∂θ
=

[
α

(
a
∂

∂x
+ b

∂

∂y

)
, c

∂

∂θ

]

=
[
a
∂

∂x
+ ∂

∂y
+ x

∂

∂θ
, c

∂

∂θ

]
= 0, (9)

and

c
∂

∂θ

(
a
∂

∂x
+ b

∂

∂y

)
= 0

for anya, b, c ∈ R.
Let Φ ∈ C2(η,LR). With respect to the basis{∂/∂x, ∂/∂y} Φ is represented by the

matrix(
u v

w t

)
.

Taking into account(9) we have

∂2Φ(X, Y,Z) = −Φ(XY, Z) − Φ(Y,XZ) + Φ(YX, Z) + Φ(X,YZ).

Then taking into account(8) we get

∂2Φ(X, Y,Z) = −Φ(Y,XZ) + Φ(X,YZ).
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Take X = (a, b), Y = (a′, b′), Z = (a′′, b′′), then XZ = (aa′′, bb′′) and YZ =
(a′a′′, b′b′′), and hence

∂2Φ(X, Y,Z) = −(a′b′)
(
u v

w t

) (
aa′′
bb′′

)
+ (ab)

(
u v

w t

) (
a′a′′
b′b′′

)

= −aa′′(ua′+wb′)−bb′′(va′ + tb′) + a′a′′(ua + wb) + b′b′′(va + tb)

= w(a′a′′b − aa′′b′) + v(ab′b′′ − a′bb′′).

Thus∂2Φ = 0 iff v = w = 0, that is iff

Φ = uaa′ + tbb′.

Therefore, the mapping∂ from H2(η,LR) to H 2(ηL,LR) is zero. The obstruction
o([ω]) ∈ O(η, ηL) is not zero, thus the manifoldM does not carry an affine structure
inducing the structures(6) and (7).
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