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Abstract

We study transversely affine foliations with affine leaves from the point of view of Koszul-Vinberg
modules. We have found a cohomological condition which assures that these structures determine an
affine structure on the ambient manifold. The theoretical part is supplemented by suitable examples.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Affine manifolds play an important role in the theory of geometrical quantization—under
some conditions a symplectic manifold carries also the structure of an affine manifold. To
be precise, a careful look at the Konstant—Souriau quantization of classical observables
discloses that it depends on a pair of supplementary Lagrangian subbundles. In his paper
[2] Hess improved this classical method using bi-Lagrangian connections. His approach
unifies several quantization methods. One of the important properties considered by Hess
in his paper is the following theorem.

Theorem 1 (Hess). Let F and Q be two supplementary Lagrangian subbundles of a sym-
plectic manifold(M, w). Then F and Q are Heisenberg related foliationsiff the associated
bi-Lagrangian connection isflat.
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The Hess theorem assures that the symplectic manifold in question has an affine structure
defined by a symplectic connection who induces canonical affine structures on leaves of
both Lagrangian foliations.

Independently, the first author developed a similar theory of connections in view of an
application to the theory of affine structures on nilpotent and solvable Lie group3,43f.

In his papef6] the second author took up the study of pairs of supplementary Lagrangian
subbundles assuming that one of them is a foliation. A simple condition on the curvature of
the associated bi-Lagrangian connection assured that the foliation was transversely affine.
Namely, we have the following proposition.

Proposition 1. Let F be a Lagrangian foliation on a symplectic manifold (M, w). If F
admits a supplementary Lagrangian subbundle for which the associated bi-Lagrangian
connection is tangential, i.e. the mixed component of the curvature vanishes, then the foli-
ation F istransversely affine.

This proposition permitted to apply the theory of transversely affine foliations developed
by the second author and prove some interesting properties of such pairs of supplementary
Lagrangian subbundles, ¢6,7].

In this short paper we propose to look at these structures from a different point of view.
We assume that on a manifold we have a transversely affine foliation whose leaves are
affine manifolds. We apply the theory of Koszul-Vinberg modules and their homologies
developed by the first auth@] to obtain homological conditions which ensure that our
manifold is affine and its flat connection induces the initial affine structures on leaves of the
foliation as well as the initial transverse affine structure.

2. Notation and definitions

In this section we recall and introduce some useful notions and present chosen examples.
All the objects considered are smooth, Z&°, unless otherwise stated.

c is avector bundl& — M whose space of sectioi® E) (or more precisely the sheaf
of sections) has the following properties:

(p1) I'(E) is a Koszul-Vinberg algebra, i.e. to any two sectiong we associate a third
ones -s” and this multiplication satisfies the following condition: for any three sections
s, s’ ands”

(5,55 =(s"s5,5"), (5,55 =5-(s5")—(s-5)-s".

(p2) There exists a linear mapping (called ancher) I'(E) — X (M) satisfying the
following for any f € C*°(M) ands, s’ € I'(E):

(fs)-s' = f(s-s), s-(0) = f(s-s)+ (@) f) s

Definition 1. Given a KV-algebroidt :— M we denote byL = L(E) the subset of
so € I'(E) such thassy = O for anys € I'(E).

Elements of_ are called linear sectiors (or parallel vector fields). We also s&tE) =
{£e(E): (s,s',&) =0foranys,s’ € I'(E)}.
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Remark. For any KV-algebraE the space of sectionk(E) is a Lie algebra with the
bracket f,s'] = s -5’ — s’ - s. Therefore, it follows from (p) that the anchor map is a
morphism of the associated Lie algebras.

Example 1.

(i) If (M, D) is an affine manifold then the tangent bundle= TM is a KV-algebroid
with the multiplications - s’ = Dys’” and the anchor mapping(s) = s.

(i) Let (M, w) be a symplectic manifold. IF is a Lagrangian foliation otM, w) denote
by E the subbundle ofM of vectors tangent to the leaves of the foliatidn The
KV-algebra multiplication in"(E) is defined as follows:

i(s-shw = Li(sw,

whereL; is the Lie derivation and(s) is the inner product.
One can easily check that the associated Lie algebra structure is the standard one.
(i) For any manifoldM its cotangent bundI€* M carries the structure of a KV-algebroid
associated to the vertical Lagrangian foliation of the standard symplectic manifold
(T*M, wo).

Next we would like to introduce an analogue of the normal bundle of a subbundle.

Definition 2. Let E — M be a KV-algebroid with an injective anchor(such KV-alge-
broids are called regular). A KV-colagebroid Bfis a vector fibre bundl®& — M together
with a linear applicatiom : I"(N) — I'(TM) such that

(P1) I'(N)is aKV-algebra.
(P2) There exists an exact sequence of Lie algebras

0— I'(E)ST(TM)-5 (V) - 0. 1)

(P3) The anchor mapping : I"(N) — I'(TM) is a section ofj and for any two sections
s, s’ of N and a smooth functiorf

o (fs) -5/ = f(s-5).
o 5-(fs) = f(s-s")+ (a(s) f)s' for any E-basic functionf (i.e. Ly f = O for any
o € I'(E)).

The mapping : I'(TM) — I'(E) defined ag(8(x)) = x —aj (x) foranyx € I'(TM).

We recall that/ (N) is the subset of elemengsof I'(N) such that(s, s'6) = 0 for
anys,s € I'(N). It is not difficult to notice that/ (N) is an associative subalgebra of the
KV-algebral (N).

A manifold foliated by a transversely affine foliatidhwhose leaves carry affine struc-
tures provides us with the pair of a KV-algebroid and its coalgebroid. The subbaéle
of vectors tangent to the leaves of the foliation is a KV-algebroid and the normal bundle
N (F) of the foliation is its coalgebroid. The anchor of tB&F) is the standard inclusion
and the anchor mapping &f(F) is defined by a choice of the supplementary subbundle of
the foliation (i.e. the identification of the normal bundle with a transverse subbundle to the
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foliation). In the paper of BenojtL] one can find an example as above in which the manifold
does not carry an affine structure (equivale®lygM) does not carry a KV-algebra struc-
ture) which induces the described algebraic structureB @) and N (F), i.e. the tangent

and transverse affine structures. The aim of this note is to present an algebraic condition
assuring that it is precise in this case.

3. E-parallel vector fields

Let E — M be a KV-algebroid. The shedl(E) is E-transitive, i.e. for sufficiently
small open set& the sections of (U) generate”*°(U)-modulel" (E)(U). We define the
normalizer no¢L) as follows:

nor(L)(U) ={X € C(TM)(U) : [X, a(LU))] C a(L(U))}.
Next, we define a sheaf of Lie subalgebras
A(E) = nor(L)(M) Na(I"(N)).

We have an exact sequence of sheaves of vector spaces

0— £i>A(E)—j>./\/'—> 0,

whereN = j(A(E)).
Now for anys € N and/ € /(L) we put

a(s - 1) =[v,ad)],
and
l-5s=0,

wherej (v) = s. The definition is independent of the choice@s ifs = j(v) = j(v') then
Jjw—=1")=0.Sov — v = a(w) for somew € L. Thus [v — v'), a(D)] = [a(w), a())] =
a[w, 1] =0, hence, a(l)] = [v/, a(D)].

Let denote byV; the vector spacé (N) considered as the Lie algebra with the bracket
induced by the bracket IA(E).

L is a trivial KV-algebra sheaf. According to the above definitidrs a trivial right
KV-module of N and a left\/; -module.

Let us defineo : N x N — £ to be the measure of the fact that the splitting not
a Lie algebra homomorphism:

w(s,s") = [a(s), a(sH] —a(s, s']

for any sections, s’ of \V.
o takes values iV (£) if the splittinga takes values inA(E).
Since the exact sequence

0— E&A(E)—J;./\/'L -0
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is a sequence of Lie algebras (with,[£] = 0) w is a two-cocycle of the Hochschild
complexC* (N7, N(L)).
Let J(L) = {l € L : (s,s',]) = 0} for any sections, s’ € N, where(s,s’,) =
s’ D) —(s-s)-1.
The KV-complex ofA/ with coefficients inV (£) is the sequence
TS LN N L) BCoN NL)) -+,
where the mapping, : C, (N, N (L)) — Cy+1(N, N(L)) is defined as follows
qg >0, Cq(/\f, N(L)) = Hom(xIN, N (L)),
and

(o)) =—=s-1+1-s,

84051, ..., Sq41) = Z(_l)P{(spg)(. 8y Sgr1)
P=q
+(eqg(sp)0sg1) (- Sp -+ Sqr1)}s

Where(eq (5p)0sg+1) (1, ..., 6g—1) = 081, ..., E4—1, SA)sg+1-

Proposition 2. The Koszul-Spencer operator induces a natural injection of Ho (N, £) into
H 2(./\/ L, L).

Proof. One send€2(N, £) into C2(N, £) by the formulad — 96, where(36) (s, s') =
0(s,s") — 0(s’, s). Simple calculations show tha® = 0 implies that @9 = 0, thus
d:C%(\N., £) — C3(Ny, L) the coboundary operator of Chevalley—Hoschild.
On the other hand # is §-exact, therd (s, s') = —s - ¢(s") + ¢ (s - s') — @ (s) - s/, then
one easily sees thabd is d-exact. It is not difficult to verify that
do(s,s’) = —38¢(s, s).

This last identity ensures that the mapping in question is injective. |

We put

H?(Np, N(L))
Hy(NL, N (L))

Thus we have an exact sequence

O(E,N) =

0 — Ha(Np,N(L)) — H?(N.,N(L)) - O(E,N) — 0.

The image of the cohomology class][e H?(Ny, N'(£)) in O(E, N) is denoted by
Oo(E, N).

Theorem2. Let0 - E — TM — N — 0bean exact sequence of vector bundles. Assume
that A/ generates I' (N) asa C*° (M, R)-module. Moreover, let E be a KV-algebroid and N
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be its KV-coalgebroid. If the right splitting o of the exact sequence takes valuesin AV into
nor(L), then the manifold M admits an affine structure compatible with the KV-structures
onEand Niffo(E, N) =0.
Proof of Theorem 1. Assume that the manifoltf has an affine structu® which induces
affine structures on the leaves of the foliatiBnthusé& is a subsheaf of the she@M of
KV algebras. In particular leaves of the foliatighare totally geodesic submanifolds for
the connectiorD.
Our assumptions permit us to define a two-chain\V" — £ by the following formula:
0(s,s") = a(s) - a(s) —a(s - 5') = Dya(s’) —a(s - s').
We can identify A(E)(U) with N (£)(U) & N (U) and put
A,s)-(',sh=s-I'+a(s-s)+0(,s).

Thend is a two-cocycle. Sincgl, s), (', s)] = [l +a(s), ' +a(s)] =, s) - (', s") —
{',s")-(,s), we get that

w(s,s) = 36(s, s").

This last equality implies that

o(E,N)=0.

Now assume that(@, N) = 0. Then there exists a clasg][n H2(N, £) such that
3[0] = [w] € H?(NL, £). Letd € [A]. One can choosé e [#] such thatdg = w» and
86 = 0. Then we put (ind(E)) s - s’ = a(s) - a(s’) = a(s - s') + 6(s, s’) and then

I+s)-'+sH)=d+a@) ' +a(s) =[als),T+0(s,s) +al(s-s).

One can easily verify that

+s, U+ 0"+ =" +5"1+5,1"+5.

Our assumption that local sections of the shdéf) span the tangent bundiéM that
the multiplication defined above defines a linear connection, i.e.

(fd+s)-+s)=fl+s)-U"+5)),
and
I+s)-(fU+sN=fA+s)- U +5N+{A+as)NHA +5).

Itis not difficult to verify that the connection determined by the KV-multiplication satisfies
the conditions of our theorem. O
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4. Examples

Example 2. Let M = R?. We denote byE the subbundle oTM generated by/dx. Let
fix h € C*°(M, R) and define the multiplication if"(E) by the following formula:

d 0 ag ah\ 9
— g =2 +fg— ) —=. 2
! & X <f8x + gax> ax @

This multiplication defines a Koszul-Vinberg algebra. The subalgébtal (E) consists
of elements of the form(y) e "®¥3/ax, wherexr € C®(R, R).
Let & be a vector field defined as follows:

8 X 8 a
E(x,y) = _/ e g | e hen 24 2
dy Jo ax 9y

Let N be the subbundle dfM generated b¥. In I" (N) we define the multiplication as
follows:

J& -85 = fE(9)E, ®3)

whereé(g) = (dg, &). In this way we define a Koszul-Vinberg algebra structurf (tv).
Let I(E) be the subalgebra of the associative algeBta(M, R) consisting of first in-
tegrals of E; it is the “inverse” image ofC*°(R, R) by the canonical projectiop; :
R X R — R, p2(x,y) = y. Thusf € I(E) iff 9f/dx = 0. One can associate to any
a € I(E)C®(M, R)-linear mapping oV into TM defined by

a

&(E)(x, y) = <a(y) 2 / Sy dt) e 0 0 @
dy Jo ox  dy

Now we can consider the coupl®, @) as a coalgebroid of the Koszul-Vinberg algebroid
E. We have

™ = E @ a(N),

and the exact sequence

0—>E—>TM—j>N—>O,

where
. d b
J (X(x, y)g) +Y(x,y) (a(y)@ +&(x, y)) =Y(x, y)&(x, y). (5)
In the sequel we assume that# 0.
Lemmal. I'(N) containsanon-null subalgebrawhoseimageby theanchor @ isinnor(L).

Proof. The subalgebra of vector field&/dx + Y d/dy in the normalizer can be identified
with coupleg X, Y) € C*(M, R) x C*°(M, R) which constitute solutions of the following
system of partial differential equations:

Ohr,y) XLy e By g V@)

0.
dax ax ay ax

X(x,y)
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Let Y(x,y)é € I'(N), thena(Y¢) € nor(L) iff Y € I(E), which is equivalent to
aY/ox =0

Let us denote by the subalgebra of the Koszul-Vinberg algelitéV) consisting of
vector fields of the form

Y@»@u,w)=1«w{( / &“”do ehten Oy a}
dx  Jy

It is not difficult to verify thata(n) C nor(L). O
Let
A =nor(L) Na(n).

ItisaLie subalgebra ofthe Lie algebFfgTM), itis a transitive one—th€°° (M, R)-module
generated by is equal tol" (TM). Moreover, we have the following exact sequence

0O>L—>A—>n—>0

which is split by the anchor map. One can easily verify that with the standard bracket of
vector fields iny:

[f§. 851 =[f&() — g5(N)]E.

The anchor is a Lie algebra homomorphism, i.e.

al 1€, g&] = [a(f§), a(gé)],
and L is an abelian subalgebra @f(TM). The algebraA is a semi-direct product af
by L.

One can considef as a Koszul-Vinberg module gfby posing

g-l=[a@®.0, 1-£=0
for anyl € L. Then one can define id a structure of a Koszul-Vinberg algebra such that
the exact sequence

0—L—> Abnp—0

is a sequence of Koszul-Vinberg algebras.
In fact, due to the main theorem the cocycle associatetizo £ x 7 is equal to 0. It can
be represented as an exact cygle C2(n, £). On the other handj is of the form

o (fE, g8) = [a(fE), v(g&)] — v ([f& - g6),
wherey € Homg(n, £).

Example 3. Let us consider the samg as in Example 2with the same multiplication
in I'(E). Take the subbundl& of TM spanned by/dy. The spacd”(N) of sections is
equipped with multiplication
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The pair(N, identity) is a coalgebroid ofE. Let Y (x, y)d/dy € I'(N), then itis in
nor(L) iff

aY di 82h

55_ Ay )8x8y -

foranyi € I(E).
The above equation is equivalent to the following two equations:

Y 32h
— =0,
ax 0xdy

To assure that n@£) N I'(N) be transitive it is necessary that the functiobe of the
form

h(x,y) =a(x) + b(y),

wherea, b € C*°(R, R). If not, I" (N) does not contain any Koszul-Vinberg subalgebra of
nor(£). From the above system one can easily deduce that in the general case the transverse
structure of an affine foliation plays a crucial roleld%) # R excludes the existence of a
dense leaf.

Example4. Let M = ST x R? with the coordinateg, x, y. They define global commuting
parallelism:a/06, 3/0x, 3/dy. Let us consider the subbundieof TM spanned by /a6
and byN the subbundle spanned Byox ando/dy.

In I"' (E) we have the following multiplication:

0 0
Fa¢3s =1 (55) 35 ©
and inI"(N) the following:
<fo— +go 0 ) <f1 %) (foa—f1 + goaf + fOfl)
9g1 3g1 0
+ (foa— + goa + gog1> 3y (7)

With the above defined multiplications(E) and I" (N) are Koszul-Vinberg algebras.
Consider the applicatiom of I"(N) into I" (TM) given by the following formulae:

a ad a a a
al— )= —, al— )| =x—+ —.
ax ax dy a0  dy

The couple(N, @) is a Koszul-Vinberg coalgebroid @. In fact for anys, s’ € I'(N)
and anyf € C*°(M, R) we have

s(fe) = fsg + a(s)fs
iff felI(E).
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On the other hand, due {6), £L = L(E) is the subspacé&(E)d/36. From the very
definitionima isinnon£). Letus consider the frelg E)-submoduled of I' (TM) generated
by {0/00, «(d/0x), «(3d/dy)} or by{0/36, d/dx, d/dy + xd/d06}. Itis a Lie subalgebra of
I’ (TM). One can obtaitd as a semi-direct product &t E)d/ox+ 1 (E)d/dy by I (E)d/96.
A contains as a subalgebra the Heisenberg algebra

24~ — spa a 9 0 n x0

2 =3Pk 155" 92" 3y 20
which is the semi-direct product of VEéyax, 3/dy} by R3/06. The cocyclew of this
extension:

3 3
R— Vect! —, —
g Mz {Bx 8y}

is the following

i) =[G <)) -

TheidealCgr = R3/96 of H z inherits the null multiplication, buj = Vect{d/dx, 3/dy}
inherits the following multiplication fronT" (N):

0 0 0 d 0 d
—+b— ) (d—+b—)=aad — +bb— 8
<a8x + 3y> (a 0x + 8y> 0x + ay ®

foranya,a’, b, b’ € R.
We define the action of on L by the following formula:

0 0 0 0 0 0
a——+b— ) c—=|lala—+b— ), c—
ax ay a6 ax ay a6
0 n 0
a—
0x

:[ 9,0 3]:0, ©)

X—,c—
ay a0 96
a ad a
c—|la—+b— | =0
00 \ ox ay

foranya, b, c € R.
Let ® € Ca(n, Lg). With respect to the basi®/dx, 3/dy} @ is represented by the
matrix

(v ?)

Taking into accoun(9) we have

B (X, Y, Z) = —D(XY, Z) — &Y, X2) + D (YX, Z) + ®(X, YZ).

and

Then taking into accour{B) we get

02P(X,Y,Z2)=—-D(Y, X2 + P(X,Y2).
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Take X = (a,b), Y = (d',b), Z = (@",b"), thenXZ = (aa”’,bb”) andYZ =
(a’a”,b'b"), and hence

—(a’b’)(fj) ’;) (ﬁﬁ//)+(ab>(3) ‘;) (Z,Z//)

= —aa’ (ua +wb)—bb” (va + th") + a’a”’ (ua+ wh) + b'b" (va + th)
=w(d@'a"’b —ad'b') + v@'b’ — a’bb”).

2P (X,Y, Z)

Thusd,@ = 0iff v = w = 0, that is iff
& = uaa + thb'.

Therefore, the mapping from Ha(n, Lg) to H%(y, Lr) is zero. The obstruction
o([w]) € O(n, nr) is not zero, thus the manifoldf does not carry an affine structure
inducing the structure®) and (7)
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